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A method is given whereby a second-order calculation of the energy due to a perturbation Hen of the zero-
order Hamiltonian He+Hp-\-H«p can be evaluated approximately using only the eigenstates \pe and relaxa
tion times Tep. As an example the Ruderman-Kittel formula for the exchange-type coupling of nuclear spins 
is re-evaluated. 

I. INTRODUCTION Using the alternative forms 

THERE are a number of examples in the litera- . w 

ture1"3 of perturbation theory being employed _ ^ / ^xt-et^ /§\ 
using eigenfunctions arising from only part of the x—ie Jo 
unperturbed Hamiltonian. I t is the purpose of this note 
to investigate the error involved in this procedure. 

To have an example in mind, we examine the model . • 
of exchange-type coupling of nuclear spins in a metal.1 

The interaction can be thought of as arising from an Equation (4) can be further rewritten as 
electron scattering from one nucleus followed by a 
scattering from the second nucleus. In the previous J/2 f00 r __HlkT Hlh _H lh _ 
calculation1 account was not taken of the possibility A£2 = ~ _HjkT \ ^r\e e% H™e % He*e 

of phonon scattering. With this in mind, it is clear that (JQ 
for distances where there is a finite chance of phonon __e~H/kTe-iHt/hH neiHt/hH e-<t\dt /7\ 
scattering the interaction given in reference 1 is en en ' 
modified. N o w j n t ^ e standard way we can write5 

II. GENERAL FORMULATION .,„ ,_ , „ ,flti .„ tlt .„ ..^, N ,ns 

eJ(He+Hp+Hep)t!hz=e1HetfhexHptihQ^pit^ (g) 
We repeat the calculation using as our basic states where 

the eigenfunctions of the total Hamiltonian which can 
be schematically written as 

ti = xielectron_r-"phonoti~r-"electron, phonon* (1) 

= - i \ e~ixt-€tdL (6) 

G(e,p,t)=l+il e-
iHei'ihe~iH^ lh 

o 

I h e perturbation is the rermi contact hyperfine J r ' ' w 

interaction4
 e-i(He+Hev+Hp)t/h:=pre p Ae-iHetfhe-iHpt/h HQ\ 

^electron, nucleus = X j ] L * ( & r / 3 ) i y • S{5(fj) (2) w J l e r e 

of the conduction electrons with the nuclear spins. f1 

Including a temperature average over the initial states & {e,pJt)=l — i J el el p 

the second-order correction to the energy is given as ° 

x X f l i ^ V W ? ^ / ) * ' . (11) 
rYxe-HlkT Substituting Eqs. (8)-(11) into Eq. (7) one has 

(E*-En), (3) ^ j 

where the prime indicates m^n. Equation (3) can be AE^—Z^~T \ TT{e~HlkTeiHetlheiHPtfhG(e,p,t) 
rewritten as e {^0 

cTF (e,p,t)e~iH'tlhe-iH"ilh 

XH.rfiE'ti*eUI>ti*G(e,p,t)n.1j—}dt. (12) 

AE2 = £ r o , n e-E"ikT(m/Hen/n)(n/Hen/m) 
""* —H/kT €_*Q 

Xll/(Em-En-ie)+l/(Em-En+ie)3. (4) 
Tre H'kT*-*o -e-^kTF(eypyt)e~iH^he-iHptlh 

* Work completed during the summer of 1962 under the general 
research budget of Lockheed Missiles and Space Company, Palo T>^~, .~ ^ i ,-««. -*-i_ 4._ *u u J -
Alto California. F ^ ' .Beiore taking the trace over the phonon coordinates an 

1M. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). approximation is made by writing 
2 N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1690 

(1955). e-H/kT^ e-HelkTe-HPlkTQ(ep }/frT) ~ e~He/kTe~HpftcT 
3 H. Suhl, Phys. Rev. 109, 606 (1958). n 

4 V. Weisskopf, Ann. Physik 9, 23 (1931). * R. Karplus, Phys. Rev. 73, 1027 (1948). 
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The effect of this approximation is to slightly mis
calculate A£2, but for our purposes this effect is un
important for it is the same for any two nuclei irre
spective of their distance apart. Next, the trace is 
taken over the phonon coordinates simplifying Eq. 
(12) to 

m. APPLICATION TO RUDERMAN-KITTEL FORMULA 

The Ruderman-Kittel formula1 is now corrected as
suming Eq. (16) is the correct form of second-order 
perturbation theory. They showed that their formula 
can be written as proportional to 

AE2 = ~ 
072) 

Tre Y\ {e~HelkTe'EplkTelHet!h 

Tre-H!kTJo v,v 

X(p/G(ept)/pf)Hen(p7F(ept)/p)e-iff^Hene-^ 

-e~H«lkTe-EvikT(p/F{ept)/p')e-iH'i!h 

Xip'/GiepO/p^ene-^dL (13) 

The most general matrix element of Eq. (13) in the 
electron representation includes three different sets of 
intermediate electron states. We only sum over those 
intermediate states for which G and F are to be con
sidered diagonal in the electron representation. For 
those familiar with the Wangness-Bloch6 derivation of 
the spin-density matrix equation this is equivalent to 
keeping the diagonal relaxation terms and neglecting 
the off diagonal as being shorter. The result is that 

ke'kBdk[P.P.J 
r f00 k'eik'rdk' 

k'2-k2 

,km k'eik'Rdkf-i 

J-km £/2_£2 J' (17) 

where km is the Fermi momentum, R is the distance be
tween nuclear sites, and P.P. means principal part. 
Including the effects of scattering, we can rewrite 
this as 

r r k'eik,Rdkr 

R e / keikR\ I — 
f2-k2-ib2 

b- k'eik'Rdk' 

k'2-V 

dk' "I 

-id2 J 
dk, (18) 

E 2 = -
(i/2) 

Tre-HlkT(J0 

T.eye-^^e'^-^^e-^ie/Hen/e') 

X(e'/Hen/e) £ {ep/G/pfeWpf/F/pee)e-E^kT 

•£ e-E-ikTe-^E"-E^li'ie-"(e/Hen/e') 

X(e'/Hen/e)Z(ep/F/p'e) 
p,p' 

X(e'p7G/pe')e-E"ikT\dL (14) 

As is shown in the Appendix we can approximately set 

Y,PP<e-E'ikT/Tre-H'ikT)(ep/G/p'e) 

X(e'p'/F/pe')~e-»T, (15) 

which simplifies Eq. (14) as 

- (i/2) r(e/Hen/e')(e'/Hen/e)e-E''kT 

E2=-
Tre-HtikT H,lkT «,«' L i{E.-E*)h-\/T 

(e/Hje'){e'/Hen/e)e-E''kT-

-i(E.-E..)/h-l/r J 
, (16) 

where e~tl has been dropped as r assures the vanishing 
of the integral at the upper limit. Equation (16) is, of 
course, just the form one might have "guessed" to 
have been correct.7 

6 R. K. Wangness and F. Bloch, Phys. Rev. 89, 728 (1953). 
7 V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930). 

where b2 = 2m/hT and Re mean real part. 
The first integral in the brackets can be integrated 

by the method of residues and the second integral can 
be shown to be zero. The result is that Eq. (18) becomes 

— 2irkm
2 I vsm(vkmR) 
Jo 

f -Rkm } 
Xexp [ (5 4 Am 4 +^ 4 ) 1 / 2 -^ ] 1 / 2 

Xcos ^ [ ( 5 4 A m 4 + ^ 4 ) 1 / 2 + ^ 2 ] 1 / 2 \dv. (19) 

Some numerical evaluations of Eq. (19) are given in 
Fig. 1. I t is clear from the form of Eq. (19) that for a 
nonzero 3 and large R the interaction is much weaker 
than for 5 = 0—this is just another way of saying that 
for large R the electron most certainly has scattered 
before it has reached the second nucleus. 

IV. CONCLUSION 

I t has been shown that one can take partial account 
of the missing states when doing perturbation theory 
with a partial set of states. The method has been 
applied in detail to the exchange-type coupling of 
nuclear spins in a metal1 where the effect is expected to 
be the most apparent. 

Suhl3 has calculated, by second-order perturbation 
theory, the exchange-type coupling of nuclear spins in 
a ferromagnet. His result modified to include scattering 
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To see this we must expand Eq. (9) as, 

G ( ^ , 0 = 1+* f e~
iHet,lhe-~iH^lhHepe

iH^iheiH^lhdtr 

Jo 

e-iHet'/hH eiHet>lheiHPt>Ihdtr 

v/ / e-iHet"lhe-iHpt"}h£[e eiHet"lheiHpt"ltifor! 
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+higher order terms, (A2) 

and take Eq. (A2) between the states ep and ep\ the 
result is that 

(ep/G/ep') 

= « P P ' - E I dt' [ dt" 

(b) 
FIG. 1. 

and 
/o=[ (Eq . 1 9 ) / - 2 T T ^ ] ^ O 

/ i = [(Eq. 19)/-2^2]^0 .oo2, 

where 0 = 52/&m
2. The value of 0 is approximately correct for Li 

at room temperature. Right-hand scale should read 10~2. 

-A2S a f Rij 

Heit = E — exp ZA+(A*+B*yi*Jt* 
SgveH^WRii [ ^ 

X c o s l — Z-A + (A*+B*yi*yi*\lclj+, (20) 
\yJ2 J 

where 
A=Hint/a

2He^ B= {g^H^rr\ 

and the rest of the symbols are defined in reference 3. 
Suhl's original result is obtained by letting J3—» 0. 

In semiconductors2 the added effect of scattering on 
the nuclear exchange-type coupling is small as the band 
gap already provides a large exponential damping. 

APPENDIX 

In Eq. (15) it is written that 

E P , P' e-E>ikT(ep/G/p'e)(ey/F/pe)/Ti<r**i*T 

p-tfT (Al) 

e',P"J0 JQ 

X(rnsr-*.»+*r-*P"W-t">i*/(ep/H,p/e"p")/i8pp. 

+higher order terms. (A3) 

Writing 

(Ee-Ee„+Ep-EP„) = AE, (A4) 

one has that 

; v 
dt' \ dtffe-^E{t'~i,l)lh 

o Jo 

1 — cosAEt/fi s'mAEt/fi t 
= +i . (A5) 

{AE)2/fi2 (AE)2/fi2 AE/fi 

Noting that (1 —cos AEt)/fit (AE)2/¥ behaves as a 
delta function with respect to integration over E and 
that the complex part of (A5) is odd with respect to E 
we see that Eq. (Al) becomes approximately 

l - / / 2 T - / / 2 r - - - « e - ' / T , (A6) 

where 

l / r = 2T £ Z <T*»'*r I (ep/Hep/e"p") | */ 

Tre-E"lkT. (A7) 


